Multilayer GEM detector experimental and simulation results

Sourav Tarafdar
EIC tracking R&D meeting
10/19/2020

IBF = Cathode current / Anode current

- Standard 10x10 GEMs
- ArCO2 (70:30) gas
- Fe-55 spectra taken from bottom of last GEM for effective gain calculation
- All channels of readout pad summed together to extract induced current from avalanche electrons.
- 5mm collimator for Fe-55 and 1mm collimator for Xray tube
- For IBF measurement X-ray tube was operated at 20 kV and 15 uA.
- Drift field = 1 kV/cm, transfer field =Induction field = 2 kV/cm,

rotential unierence across of ivity talge [V]

(all

summed

together)

Data and simulation discrepancy, single GEM

Single GEM simulation and experimental result for ArCO2 (70:30) gas $\,$, Penning coefficient for Ar = 0.56

Overlay of CERN result and my simulation for ArCO2(70:30) using Penning coeff. Of 0.56 and 1.0

Note: Using Penning coefficient of 1 is not right even if it shows better agreement with experiment

Data and simulation discrepancy, triple GEM detector, ArCO2(70:30) Experimental data is from Vanderbilt University

- IBF from both simulation and data show the same trend.
- Probably we cannot do quantitative comparison between data and simulation but qualitative comparison is possible.
- Discrepancy between data and simulation is probably because not taking into account of charge up effect of GEMs in simulation which tends to enhance the effective gain as per Garfield++ authors.
 - Need to try iterative procedure to take into account GEMs change up effect.